Analysis of Complex Systems

Lecture 2: Complex systems as graphs

Marcus Kaiser m.kaiser@ncl.ac.uk

Objectives

- Graphs
- Computational complexity (Time and Space)
- Graph representations
- Patterns in graphs
- (Shortest) Paths

Origin of graph theory: Leonhard Euler, 1736

Bridges over the river Pregel in Königsberg (now Kaliningrad) Euler tour: path that visits each edge and returns to the origin

Graphs

- Graph: set of nodes and edges (non-directed)
 G = (V,E)
- Set of nodes: V (singular: vertex; plural: vertices)
- > Set of edges: $E \subseteq V \times V$
- E.g., V={v1,v2,v3,v4}, E={(v1,v2), (v1,v3), (v2,v3), (v3,v4)}

Directed graphs (Digraphs)

- Graph: set of nodes and arcs (directed)
- Set of nodes (vertices): V
- > Set of edges: $E \subseteq V \times V$, the order matters
- E.g., V={v1,v2,v3,v4}, E={(v1,v2), (v1,v3), (v2,v3), (v3,v4), (v4,v1)}

Graphs and Networks

In theory (mathematics) Graph: G=(V,E)

Network: N=(G, s, t, c)

defined by graph G with source s, sink t, and edge capacity c

(examples: electricity/power grid, water flow, metabolic flux)

23,12 31,8 15,0 56,16 56,16 17,8 15,0 25,4 16,13 14,6 14,6

In reality (CS, engineering, economics, life and social sciences): term network used throughout (as in this course)

Nodes in graphs

- Isolated nodes
- Degree of a node
- Connected graph

 $(N^{*}(N-1))/2)$

- Average degree of a graph
- Edge density: probability that any two nodes are connected d= <u>E</u>

Isolated node: v5

- Degree of a node: d(v1)=2, d(v4)=1
- Average degree of a graph: D = (2+2+3+1+0)/5 = 1.6

Edge density d=4/(5*4/2) = 0.4

Examples: edge density

16

	nodes	edges	density [%]
Autobohnon	1 160	2 496	0.10
Autobannen	1100	2 400	0.10
Internet	6 524	29 629	0.0696
www	325 729	1 497 135	0.0014
Power Grid	4 677	12 500	0.0572
metabolic	422	1 972	1.3
C. Elegans	202	2 540	6.3
(partial network)			

73

macaque

835

sparse network (density ~ 1%)

dense network
(density > 5%)

Algorithm evaluation: Time and space

Computational resources

- Two resources constrain our analysis and simulations: processing *time* and memory *space*
- How much time and space will an algorithm need to deal with a network with N nodes? Are there better algorithms that are faster or use less memory?
- Big-O notation gives a *worst-case* approximation of needed resources. Examples:
- Resource needed Big-O notation
- c*N O(N) (constant factors are neglected)
- N²+N+c O(N²) (only largest component of a sum is used)

Examples for the time resource

(P - polynomial) The good: time to get an item from a table: O(1)O(N)time needed for adding N numbers: The bad: calculate the degree of all nodes $O(N^2)$ $O(N^3)$ find all shortest paths (NP – non-polynomial) N*(N-1)*(N-2)*...*3*2*1 The ugly: test whether two networks are identical: O(N!) $O(N^N)$ travelling salesman problem:

Graph representation

Representation of graphs – 1

- Adjacency matrix: a(i,j) = 1 if there is an edge between nodes i and j, a(i,j)=0 otherwise
- In case of non-directed graphs the adjacency matrix is symmetric (same values across the diagonal)
- In case of directed graphs the adjacency matrix may not be symmetric

Advantage: Direct access to each element (O(1) time complexity)

Disadvantage: Storage needs for large networks (space complexity O(N²) even if most entries are zeros)

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $(0 \ 1 \ 1 \ 0)$

Representation of graphs – 2

> Adjacency list (list of existing edges)

w: weight (e.g. 1)

Can be generated in Matlab with the sparse command

Advantage: Low demand for computer memory (space complexity: $O(E) \sim O(N)$)

Disadvantage: time to access one matrix element (time complexity O(E) instead of O(1) for adjacency matrices: worst case fully connected matrix $O(E) = O(N^2)$)

Patterns in graphs

Sub-graphs

- Sub-graph = subset of edges and nodes
- \succ E.g., E' \subseteq E, V' \subseteq V
- Complementary graph = the rest of the graph

Neighbourhood

Neighbourhood of a node = set of nodes connected to the node

E.g., close functional relationship

Clusters (or modules / communities)

- Dense connections within subgraph but few connections with remaining network
- Nodes within clusters often have similar functions (e.g. protein interaction cluster)

Example: Cat cortical connectivity

Edge: Existing fibre tract

Colours: Area function

Position: Nearby on the circle when connections are similar

- Tree = set of nodes and edges, such that no cycle is included
- Ferminology: forest, parent, leaf, root

Bi-partite graphs

- Subclass of n-partite graphs
- > Two classes:

only edges between nodes of a different class are established

Examples:
 Pairing (male-female; people-guitars)
 Interactions (DNA-Protein)

(Shortest) Paths

- Path between nodes
- E.g., signalling pathway
- E.g., V={v1,v2,v3,v4,v5,v6}, E={(v1,v2), (v1,v3), (v2,v3), (v3,v4), (v3,v5), (v5,v4)} P(v1,v5)={(v1,v3),(v3,v4),(v4,v5)}

Directed graphs

Cycles (non-directed) and circuits (directed)

E.g., metabolic cycles

Loop = direct feedback (v1->v1)

- Number of paths between two nodes
- E.g., how redundant are protein interaction systems

- Length of path: number of edges in the path
- E.g., P(v1,v5)={(v1,v3),(v3,v5)}, length (P)=2
- ➢ Paths of length 1 → entries of the adjacency matrix A
- > Paths of length 2 \rightarrow entries of A²=A x A
- > Paths of length k \rightarrow entries of A^k=A x A^{k-1}

Matrix multiplication

Element-wise multiplication (A.*B = C in Matlab) $\begin{pmatrix}
0 & 2 \\
2 & 0
\end{pmatrix}
*
\begin{pmatrix}
0 & 2 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & 4 \\
2 & 0
\end{pmatrix}$

Matrix multiplication (A*B = C in Matlab) A x B

$$c_{i,j} = a_{i,1}b_{1,j} + a_{i,2}b_{2,j} + \ldots + a_{i,n}b_{n,j}$$

$$\mathsf{C}_{i,j} = \sum_{r=1}^{n} A_{i,r} B_{r,j}$$

- Distance between two nodes = length of minimal length path between the nodes
- D(v1,v4) = min {

Diameter of a graph = maximum of distances between nodes of the graph
 D(G) = max {d(v1,v2), d(v1,v3), ..., d(v3,v4)} = 2

- Average distance of a graph (or average shortest path / characteristic path length) = average of distances between nodes
- > Example:

 $D(G) = (d(v1,v2) + d(v1,v3) + \dots + d(v3,v4)) / 12$

Time complexity: O(N³); some algorithms achieve O(N² log N)

Examples: average path length

- Human acquaintance network: 7 steps ("six degrees of separation") between any two persons in the US (Milgram, Psychology Today, 1963) -> small-world phenomenon
- World-Wide-Web: 19 steps from one web page to any other webpage (Albert et al., Nature, 1999)
- Neural networks:

C. elegans: 2 steps (Watts & Strogatz, Nature, 1998) Macaque and cat fibre tract networks: 2 steps (Hilgetag, Phil. Trans. Roy. Soc. B, 2000)

Summary

- What are graphs and patterns in graphs?
- Which time and space resources are needed to analyse this size of the network? Are there better algorithms?
- How can networks be represented in the computer and what are the benefits and disadvantages?
- > What are paths/shortest paths/diameter?

Q&A – 1

- 1. Is it true that graphs are made of nodes and edges ?
- 2. Is it true that in a directed graph the edge (v1,v2) is equivalent with the edge (v2,v1)?
- 3. Is it true that it is possible to have more than one path between two nodes of a graph ?
- 4. Is it true that the distance between two nodes is the length of the longest path between the two nodes ?

Q&A - 2

5. Is it true that the matrix A is an adjacency matrix ? What about the matrix B ?

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Q&A – 3

- 6. Is it true that the neighbourhood of a node is the set of nodes connected to the node ?
- 7. What is the time and space complexity of the following tasks:
 - yield all neighbours of one node
 - yield the length of the longest path between one pair of nodes
 - yield the all alternative shortest paths between one pair of nodes